Scientists discovered the signs of tectonic activity on exoplanet

Volcanoes might light up the night sky of this planet.

Share

Plate tectonics on Earth is responsible for the rise of mountains and earthquakes and an essential part of the cycle that brings material from the planet’s interior to the surface and the atmosphere. It then transports it back beneath the Earth’s crust.

Until now, none of the exoplanets has shown evidence of global tectonic activity. An international team of scientists led by the University of Bern has found evidence of the flow patterns inside a planet located 45 light-years from Earth: LHS 3844b. They discovered the material inside planet LHS 3844b flows from one hemisphere to the other and could be responsible for numerous volcanic eruptions on one side of the planet.

The team includes scientists from the Center for Space and Habitability (CSH) at the University of Bern, ETH Zurich, the University of Oxford, and the National Center of Competence in Research NCCR PlanetS.

Tobias Meier from the Center for Space and Habitability (CSH) at the University of Bern said, “Observing signs of tectonic activity is very difficult because they are usually hidden beneath an atmosphere. However, recent results suggested that LHS 3844b probably does not have an atmosphere. Slightly larger than Earth and likely similarly rocky, it orbits around its star so closely that one side of the planet is in constant daylight and the other in the permanent night—just like the same side of the Moon always faces the Earth.”

“With no atmosphere shielding it from the intense radiation, the surface gets blisteringly hot: it can reach up to 800°C on the dayside. The night side, on the other hand, is freezing. Temperatures there might fall below minus 250°C. We thought that this severe temperature contrast might affect material flow in the planet’s interior.”

Scientists tested their theory by running computer simulations with different strengths of material and internal heating sources, such as heat from the planet’s core and the decay of radioactive elements. The simulations included the significant temperature contrast on the surface imposed by the host star.

Meier reports, “Most simulations showed that there was only upwards flow on one side of the planet and downwards flow on the other. The material, therefore, flowed from one hemisphere to the other.”

Co-author Dan Bower at the University of Bern and the NCCR PlanetS explains, “Based on what we are used to from Earth, you would expect the material on the hot dayside to be lighter and therefore flow upwards and vice versa. Yet, some of the teams’ simulations also showed the opposite flow direction.”

“This initially counter-intuitive result is due to the change in viscosity with temperature: cold material is stiffer and therefore doesn’t want to bend, break or subduct into the interior. Warm material, however, is less viscous—so even solid rock becomes more mobile when heated—and can readily flow towards the planet’s interior. Either way, these results show how a planetary surface and interior can exchange material under conditions very different from those on Earth.”

“Such material flow could have bizarre consequences. “On whichever side of the planet the material flows upwards, one would expect a large amount of volcanism on that particular side. Similar deep upwelling flows on Earth drive volcanic activity at Hawaii and Iceland. Therefore, one could imagine a hemisphere with countless volcanoes—a volcanic hemisphere so to speak—and one with almost none.”

Meier said“Our simulations show how such patterns could manifest, but it would require more detailed observations to verify. For example, a higher-resolution map of surface temperature could point to enhanced outgassing from volcanism or detection of volcanic gases. This is something we hope future research will help us to understand.”

Journal Reference:
  1. Tobias G. Meier et al. Hemispheric Tectonics on LHS 3844b, The Astrophysical Journal (2021). DOI: 10.3847/2041-8213/abe400

Trending