A thick ring of cosmic dust and gas hiding a supermassive black hole


Follow us onFollow Tech Explorist on Google News

The European Southern Observatory’s Very Large Telescope Interferometer (ESO’s VLTI) has observed a cloud of cosmic dust at the centre of the galaxy Messier 77 that is hiding a supermassive black hole. The findings have confirmed predictions made around 30 years ago and are giving astronomers new insight into “active galactic nuclei”, some of the brightest and most enigmatic objects in the universe.

Active galactic nuclei (AGNs) are extremely energetic sources powered by supermassive black holes and found at the centre of some galaxies. These black holes feed on large volumes of cosmic dust and gas. Before it is eaten up, this material spirals towards the black hole and huge amounts of energy are released in the process, often outshining all the stars in the galaxy.

Astronomers have been curious about AGNs ever since they first spotted these bright objects in the 1950s. Now, thanks to ESO’s VLTI, a team of researchers, led by Violeta Gámez Rosas from Leiden University in the Netherlands, have taken a key step towards understanding how they work and what they look like up close. The results are published today in Nature.

By making extraordinarily detailed observations of the centre of the galaxy Messier 77, also known as NGC 1068, Gámez Rosas and her team detected a thick ring of cosmic dust and gas hiding a supermassive black hole. This discovery provides vital evidence to support a 30-year-old theory known as the Unified Model of AGNs.

Astronomers know there are different types of AGN. For example, some release bursts of radio waves while others don’t; certain AGNs shine brightly in visible light, while others, like Messier 77, are more subdued. The Unified Model states that despite their differences, all AGNs have the same basic structure: a supermassive black hole surrounded by a thick ring of dust.

A close-up view of Messier 77’s active galactic nucleus
This image, captured with the MATISSE instrument on ESO’s Very Large Telescope Interferometer, shows the very inner region of the active galaxy Messier 77. Active galactic nuclei are extremely energetic sources powered by supermassive black holes. By making extraordinarily detailed observations of the active centre of this galaxy, a team of astronomers detected a thick ring of cosmic dust and gas hiding a supermassive black hole. The black dot shows the most probable position of the black hole, while the two ellipses show the extent, seen in projection, of the thick inner dust ring (dashed) and extended dust disc. Credit: ESO/Jaffe, Gámez-Rosas et al.

According to this model, any difference in appearance between AGNs results from the orientation at which we view the black hole and its thick ring from Earth. The type of AGN we see depends on how much the ring obscures the black hole from our view point, completely hiding it in some cases.

Astronomers had found some evidence to support the Unified Model before, including spotting warm dust at the centre of Messier 77. However, doubts remained about whether this dust could completely hide a black hole and hence explain why this AGN shines less brightly in visible light than others.

“The real nature of the dust clouds and their role in both feeding the black hole and determining how it looks when viewed from Earth have been central questions in AGN studies over the last three decades,” explains Gámez Rosas. “Whilst no single result will settle all the questions we have, we have taken a major step in understanding how AGNs work.”

The observations were made possible thanks to the Multi AperTure mid-Infrared SpectroScopic Experiment (MATISSE) mounted on ESO’s VLTI, located in Chile’s Atacama Desert. MATISSE combined infrared light collected by all four 8.2-metre telescopes of ESO’s Very Large Telescope (VLT) using a technique called interferometry. The team used MATISSE to scan the centre of Messier 77, located 47 million light-years away in the constellation Cetus.

“MATISSE can see a broad range of infrared wavelengths, which lets us see through the dust and accurately measure temperatures. Because the VLTI is in fact a very large interferometer, we have the resolution to see what’s going on even in galaxies as far away as Messier 77. The images we obtained detail the changes in temperature and absorption of the dust clouds around the black hole,” says co-author Walter Jaffe, a professor at Leiden University.

Combining the changes in dust temperature (from around room temperature to about 1200 °C) caused by the intense radiation from the black hole with the absorption maps, the team built up a detailed picture of the dust and pinpointed where the black hole must lie. The dust — in a thick inner ring and a more extended disc — with the black hole positioned at its centre supports the Unified Model. The team also used data from the Atacama Large Millimeter/submillimeter Array, co-owned by ESO, and the National Radio Astronomy Observatory’s Very Long Baseline Array to construct their picture.

“Our results should lead to a better understanding of the inner workings of AGNs,” concludes Gámez Rosas. “They could also help us better understand the history of the Milky Way, which harbours a supermassive black hole at its centre that may have been active in the past.”

Dazzling galaxy Messier 77
ESO’s Very Large Telescope (VLT) has captured a magnificent face-on view of the barred spiral galaxy Messier 77. The image does justice to the galaxy’s beauty, showcasing its glittering arms criss-crossed with dust lanes — but it fails to betray Messier 77’s turbulent nature. Credit: ESO

The researchers are now looking to use ESO’s VLTI to find more supporting evidence of the Unified Model of AGNs by considering a larger sample of galaxies.

Team member Bruno Lopez, the MATISSE Principal Investigator at the Observatoire de la Côte d’Azur in Nice, France, says: “Messier 77 is an important prototype AGN and a wonderful motivation to expand our observing programme and to optimise MATISSE to tackle a wider sample of AGNs.”

ESO’s Extremely Large Telescope (ELT), set to begin observing later this decade, will also aid the search, providing results that will complement the team’s findings and allow them to explore the interaction between AGNs and galaxies.

Journal Reference

  1. Violeta Gámez Rosas, Jacob W. Isbell, Walter Jaffe, Romain G. Petrov, James H. Leftley, KarlHeinz Hofmann, Florentin Millour, Leonard Burtscher, Klaus Meisenheimer, Anthony Meilland, Laurens B.F.M. Waters, Bruno Lopez, Stéphane Lagarde, Gerd Weigelt, Philippe Berio, Fatme Allouche, Sylvie Robbe-Dubois, Pierre Cruzalèbes, Felix Bettonvil, Thomas Henning, JeanCharles Augereau, Pierre Antonelli, Udo Beckmann, Roy van Boekel, Philippe Bendjoya, William C. Danchi, Carsten Dominik, Julien Drevon, Jack F. Gallimore, Uwe Graser, Matthias Heininger, Vincent Hocdé, Michiel Hogerheijde, Josef Hron, Caterina M.V. Impellizzeri, Lucia Klarmann, Elena Kokoulina, Lucas Labadie, Michael Lehmitz, Alexis Matter, Claudia Paladini, Eric Pantin, Jörg-Uwe Pott, Dieter Schertl, Anthony Soulain, Philippe Stee, Konrad Tristram, Jozsef Varga, Julien Woillez, Sebastian Wolf, Gideon Yoffe, Gerard Zins. Thermal imaging of dust hiding the black hole in the Active Galaxy NGC 1068; Nature DOI: 10.1038/s41586-021-04311-7


See stories of the future in your inbox each morning.