Home MORE ON ESO

Tag: ESO

Hidden in one of the darkest corners of the Orion constellation, this Cosmic Bat is spreading its hazy wings through interstellar space two thousand light-years away. It is illuminated by the young stars nestled in its core — despite being shrouded by opaque clouds of dust, their bright rays still illuminate the nebula. Too dim to be discerned by the naked eye, NGC 1788 reveals its soft colours to ESO's Very Large Telescope in this image — the most detailed to date. Credit: ESO

A Cosmic Bat in Flight

ESO's Very Large Telescope (VLT) has caught a glimpse of an ethereal nebula hidden away in the darkest corners of the constellation of Orion...
This artist’s impression shows the outermost planet of the Solar System, Neptune, and its small moon Hippocamp. Hippocamp was discovered in images taken with the NASA/ESA Hubble Space Telescope. Whilst the images taken with Hubble allowed astronomers to discover the moon and also to measure its diameter, about 34 kilometres, these images do not allow us to see surface structures.

Hubble helps uncover origin of Neptune’s smallest moon Hippocamp

Astronomers using the NASA/ESA Hubble Space Telescope, along with older data from the Voyager 2 probe, have revealed more about the origin of Neptune’s...
Deep within the glowing cloud of the HII region LHA 120-N 180B, MUSE has spotted a jet emitted by a fledgling star — a massive young stellar object . This is the first time such a jet has been observed in visible light outside the Milky Way. Usually, such jets are obscured by their dusty surroundings, meaning they can only be detected at infrared or radio wavelengths by telescopes such as ALMA. However, the relatively dust-free environment of the LMC allowed this jet — named Herbig–Haro 1177, or HH 1177 for short — to be observed at visible wavelengths. At nearly 33 light-years in length, it is one of the longest such jets ever observed. This annotated image shows a close-up of the jet source and the bow shocks formed by the jet interacting with surrounding gas. Credit: ESO, A McLeod et al.

Bubbles of brand new stars

This dazzling region of newly-forming stars in the Large Magellanic Cloud (LMC) was captured by the Multi Unit Spectroscopic Explorer instrument (MUSE) on ESO’s...
The faint, ephemeral glow emanating from the planetary nebula ESO 577-24 persists for only a short time  — around 10,000 years, a blink of an eye in astronomical terms. ESO’s Very Large Telescope captured this shell of glowing ionised gas — the last breath of the dying star whose simmering remains are visible at the heart of this image. As the gaseous shell of this planetary nebula expands and grows dimmer, it will slowly disappear from sight. This stunning planetary nebula was imaged by one of the VLT’s most versatile instruments, FORS2. The instrument captured the bright, central star, Abell 36, as well as the surrounding planetary nebula. The red and blue portions of this image correspond to optical emission at red and blue wavelengths, respectively. An object much closer to home is also visible in this image — an asteroid wandering across the field of view has left a faint track below and to the left of the central star. And in the far distance behind the nebula a glittering host of background galaxies can be seen.

A Fleeting Moment in Time

The faint, ephemeral glow emanating from the planetary nebula ESO 577-24 persists for only a short time — around 10,000 years, a blink of...
Abell S1063, a galaxy cluster, was observed by the NASA/ESA Hubble Space Telescope as part of the Frontier Fields programme. The huge mass of the cluster — containing both baryonic matter and dark matter — acts as cosmic magnification glass and deforms objects behind it. In the past astronomers used this gravitational lensing effect to calculate the distribution of dark matter in galaxy clusters. A more accurate and faster way, however, is to study the intracluster light (visible in blue), which follows the distribution of dark matter. Credit: NASA, ESA, and M. Montes (University of New South Wales, Sydney, Australia)

Faint starlight in Hubble images reveals distribution of dark matter

Astronomers using data from the NASA/ESA Hubble Space Telescope have employed a revolutionary method to detect dark matter in galaxy clusters. The method allows...
This image illustrates all three classes of the telescopes planned for the southern hemisphere at ESO's Paranal Observatory, as viewed from the centre of the array. This rendering is not an accurate representation of the final array layout, but it illustrates the enormous scale of the CTA telescopes and the array itself. Credit: CTA/M-A. Besel/IAC (G.P. Diaz)/ESO

ESO to host Cherenkov telescope Array-South at Paranal

ESO’s Director General and the Managing Director of the Cherenkov Telescope Array (CTA) Observatory have signed the agreement needed for CTA’s southern hemisphere array...
While testing a new subsystem on the SPHERE planet-hunting instrument on ESO’s Very Large telescope, astronomers were able to capture dramatic details of the turbulent stellar relationship in the binary star R Aquarii with unprecedented clarity — even compared to observations from the NASA/ESA Hubble Space Telescope. This image is from the SPHERE/ZIMPOL observations of R Aquarii, and shows the binary star itself, as well as the jets of material spewing from the stellar couple. Credit: ESO/Schmid et al.

Dancing with the Enemy

While testing a new subsystem on the SPHERE planet-hunting instrument on ESO’s Very Large Telescope, astronomers were able to capture dramatic details of the...
The telescopes of the SPECULOOS Southern Observatory gaze out into the stunning night sky over the Atacama Desert, Chile. Credit: ESO/ P. Horálek

First Light for SPECULOOS

The SPECULOOS project has made its first observations at the European Southern Observatory’s Paranal Observatory in northern Chile. SPECULOOS will focus on detecting Earth-sized...
The VISIR instrument on ESO’s VLT captured this stunning image of a newly-discovered massive binary star system. Nicknamed Apep after an ancient Egyptian deity, it could be the first gamma-ray burst progenitor to be found in our galaxy. Apep’s stellar winds have created the dust cloud surrounding the system, which consists of a binary star with a fainter companion. With 2 Wolf-Rayet stars orbiting each other in the binary, the serpentine swirls surrounding Apep are formed by the collision of two sets of powerful stellar winds, which create the spectacular dust plumes seen in the image. The reddish pinwheel in this image is data from the VISIR instrument on ESO’s Very Large Telescope (VLT), and shows the spectacular plumes of dust surrounding Apep. The blue sources at the centre of the image are a triple star system — which consists of a binary star system and a companion single star bound together by gravity. Though only two star-like objects are visible in the image, the lower source is in fact an unresolved binary Wolf-Rayet star. The triple star system was captured by the NACOadaptive optics instrument on the VLT. Credit:ESO/Callingham et al.

Cosmic Serpent

The VISIR instrument on ESO’s Very Large Telescope has captured this stunning image of a newly discovered massive triple star system. Nicknamed Apep after...

TRENDING NOW