Albert Einstein provided the first hint of the dark universe exactly 100 years ago when he discovered a parameter in his equations known as the ‘cosmological constant’, which we now know to be synonymous with dark energy.

Einstein famously called the cosmological constant his ‘biggest blunder’, although modern astrophysical observations prove that it is a real phenomenon. In notes dating back to 1918, Einstein described his cosmological constant, writing that ‘a modification of the theory is required such that “empty space” takes the role of gravitating negative masses which are distributed all over the interstellar space.’

It is, therefore, possible that Einstein himself predicted a negative-mass-filled universe.

Scientists, in a new study, have unified dark matter and dark energy into a single phenomenon: a fluid which possesses ‘negative mass’. They have created a new model that suggests dark matter and dark energy can be unified into a fluid which possesses a type of ‘negative gravity’, repelling all other material around them.

The current model of the universe called LambdaCDM, tells nothing about what dark matter and dark energy are like physically. We only know about them because of the gravitational effects they have on other, observable matter. This new model suggests that our cosmos is symmetrical in both positive and negative qualities.

The study by Dr. Jamie Farnes from the Oxford e-Research Centre applies a ‘creation tensor’, which allows for negative masses to be continuously created. It demonstrates that when more and more negative masses are continually bursting into existence, this negative mass fluid does not dilute during the expansion of the cosmos. In fact, the fluid appears to be identical to dark energy.

The theory also offers the first right predictions of the conduct of dark matter holes. Most galaxies are turning so quickly they ought to tearing themselves, which proposes that an invisible ‘halo’ of dark matter must hold them together.

The new research distributed today includes a computer simulation of the properties of negative mass, which predicts the formation of dark matter halos simply like the ones induced by perceptions utilizing modern radio telescopes.

Dr Farnes said: “Previous approaches to combining dark energy and dark matter have attempted to modify Einstein’s theory of general relativity, which has turned out to be incredibly challenging. This new approach takes two old ideas that are known to be compatible with Einstein’s theory – negative masses and matter creation – and combines them together.”

“The outcome seems rather beautiful: dark energy and dark matter can be unified into a single substance, with both effects being simply explainable as positive mass matter surfing on a sea of negative masses.”

Proof of Dr. Farnes’s theory will come from tests performed with a cutting-edge radio telescope known as the Square Kilometre Array (SKA), an international endeavor to build the world’s largest telescope in which the University of Oxford is collaborating.

Dr. Farnes adds: “There are still many theoretical issues and computational simulations to work through, and LambdaCDM has a nearly 30-year head start, but I’m looking forward to seeing whether this new extended version of LambdaCDM can accurately match other observational evidence of our cosmology. If real, it would suggest that the missing 95% of the cosmos had anesthetic solution: we had forgotten to include a simple minus sign.”

This new model is published today in Astronomy and Astrophysics.