New detector to count 2 to 5 million gamma rays per second

A prototype for an ultrahigh-rate high-purity germanium (HPGe) detector.


Heather Crawford, a staff scientist in the Nuclear Science Division at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory, along with her colleagues, is developing a prototype for an ultrahigh-rate high-purity germanium (HPGe) detector that can count 2 to 5 million gamma rays per second while maintaining high resolution. The team expects to make a detector to measure the energy spectrum under extreme conditions precisely.

Gamma rays have the smallest wavelengths and the most energy of any wave in the electromagnetic spectrum. They are produced by the universe’s hottest and most energetic objects, such as neutron stars and pulsars, supernova explosions, and regions around black holes. On Earth, gamma waves are generated by nuclear explosions, lightning, and the less dramatic activity of radioactive decay.

Crawford said, “The ultrafast, high-resolution detector will allow scientists to do more research in less time, collecting gamma-ray statistics at 10 to 100 times the rate previously possible. This opens up new possibilities for gamma-ray spectroscopy in the rarest nuclear systems, such as superheavy elements. Whenever you’re doing gamma-ray spectroscopy, it’s about resolution and efficiency – ideally, you want an experiment to run for a couple of weeks, not years.”

With the design for the little yet forceful detector finished a month ago – the device estimates only 3 inches wide and 3 inches tall. Scientists anticipate testing the model created at Berkeley Lab’s Semiconductor Detector Laboratory as an individual detector and advancing toward a cluster afterward.


See stories of the future in your inbox each morning.