Discovery advances the field of color-changing materials

Research allows switch from crystal clear to opaque.

A graduate student at Georgia Tech has made an accidental discovery that allows materials to rapidly change color from completely clear to a range of vibrant hues — and back again.

This discovery could have an important role in applications like skyscraper windows that control the amount of light and heat coming in and out of a building, switchable camouflage and visors for military applications, and color-changing cosmetics and clothing.

John R. Reynolds, a professor at the Georgia Institute of Technology, said, “Electrochromic materials change color upon the application of a small electrical potential or voltage. Since the last 20 years, I have been studying and developing electrochromic materials that can switch from a wide range of vibrant colors to clear.”

“But these materials, known as cathodically coloring polymers, have a drawback. They’re transmissive or clear; the state is not completely clear. Rather, in this state, the material has a light blue tint. That’s fine for many applications — including rear-view mirrors that cut the glare from oncoming cars by turning dark — but not for all potential uses.”

“For example, the Air Force is working toward visors for its pilots that would automatically switch from dark to clear when a plane flies from bright sunlight into clouds. And when they say clear, they want it crystal clear, not light blue. We’d like to get rid of that tint.”

Anodically coloring electrochromic (ACEs) are from another family of electrochromic materials that can rapidly change color after the disclosure of oxidized voltage. They are colorless that only get colored upon oxidation.

But, due to the knowledge gap n the science behind the colored oxidized states, known as radical cations, scientists have not properly understood the absorption mechanism of these cations, and so the colors could not be controllably tuned.

A graduate student named Dylan T. Christiansen has now experimented with a new approach to controlling color in radical cations. Specifically, he created four different ACE molecules by making tiny changes to the ACEs’ molecular structures that have little effect on the neutral, clear state but significantly change the absorption of the colored or radical cation state.

He said, “The results were spectacular. “I expected some color differences between the four molecules but thought they’d be minor. Instead, upon the application of an oxidizing voltage, the four molecules produced four very different colors: two vibrant greens, a yellow, and a red. And unlike their cathodic counterparts, they are crystal clear in the neutral state, with no tint.”

“Finally, just like mixing inks, the researchers found that a blend of the molecules that switch to green and red made a mixture that is clear and switches to an opaque black. Suddenly those Air Force visors that switch from crystal clear to black looked more attainable.”

Aimée L. Tomlinson, a professor in the Department of Chemistry and Biochemistry at the University of North Georgia, said, “The beauty of this is it’s so simple. These minor chemical changes — literally the difference of a few atoms — have such a huge impact on color.”

Then using a computational model, Tomlinson was able to show how the small chemical changes that were made can drastically alter the electronic structure of the molecules’ radical cation states and ultimately control the color.

The work continues to generate insights into new ACE molecules thanks to continuous feedback between Tomlinson’s models and the experimental data. The models help guide efforts in the lab to create new ACE molecules, while the experimental data from those molecules make the models ever stronger.

Tomlinson notes that because the work is also helping to illuminate how radical cations work — they are still not well understood — it could help others manipulate them for future use in fields beyond electrochromism.

Reynolds commented on the serendipitous nature of the initial discovery. “I think what makes science really interesting is that [sometimes] you see something you really did not expect, you pursue it, and you end up with something that is better than you expected when you started.”

Journal Reference

  1. Dylan T. Christiansen, Aimée L. Tomlinson, and John R. Reynolds. New Design Paradigm for Color Control in Anodically Coloring Electrochromic Molecules. Journal of the American Chemical Society. 2019, 141, 9, 3859–3862 Publication Date: February 22, 2019 DOI: 10.1021/jacs.9b01507

Latest Updates

Trending